Probing the mechanism of the bifunctional enzyme ketol-acid reductoisomerase by site-directed mutagenesis of the active site.

نویسندگان

  • Rajiv Tyagi
  • Yu-Ting Lee
  • Luke W Guddat
  • Ronald G Duggleby
چکیده

Ketol-acid reductoisomerase (EC 1.1.1.86) is involved in the biosynthesis of the branched-chain amino acids. It is a bifunctional enzyme that catalyzes two quite different reactions at a common active site; an isomerization consisting of an alkyl migration, followed by an NADPH-dependent reduction of a 2-ketoacid. The 2-ketoacid formed by the alkyl migration is not released. Using the pure recombinant Escherichia coli enzyme, we show that the isomerization reaction has a highly unfavourable equilibrium constant. The reductase activity is shown to be relatively nonspecific and is capable of utilizing a variety of 2-ketoacids. The active site of the enzyme contains eight conserved polar amino acids and we have mutated each of these in order to dissect their contributions to the isomerase and reductase activities. Several mutations result in loss of the isomerase activity with retention of reductase activity. However, none of the 17 mutants examined have the isomerase activity only. We suggest a reason for this, involving direct reduction of a transition state formed during the isomerization, which is necessitated by the unfavourable equilibrium position of the isomerization. Our mechanism explains why the two activities must occur in a single active site without release of a 2-ketoacid and provides a rationale for the requirement for NADPH by the isomerase.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism-Based Studies of the Active Site-Directed Inhibition and Activation of Enzyme Transketolase

Derivatives of phenyl-keto butenoic acids have been reported to be inhibitors of pyruvate decarboxylase, (PDC). The inhibition of transketolase, a thiamine requiring enzyme such as PDF, by meta nitrophenyl derivative of 2-oxo-3-butenoic acid (MNPB) is reported here. These studies indicate that the inhibitor binds to the enzyme at the active site. A two-step inhibition was observed, first th...

متن کامل

Site-Directed Mutagenesis, Expression and Biological Activity of E. coli 5-Enolpyruvylshikimate 3-Phosphate Synthase Gene

Site-directed mutagenesis (SDM) as a powerful technique was used to change two important and conserved amino acids in 5-enolpyruvylshikimate 3- phosphate synthase (EPSPS) gene of E. coli. The mutations changed glycine 96 to alanine and alanine 183 to threonine. These two amino acids are very important for intraction of the wide spectrum herbicide, glyphosate, to EPSP synthase enzymes. By design...

متن کامل

ELUCIDATION OF pK VALUES FOR ACTIVE SITE OF HORSERADISH PEROXIDASE AND BINDING STUDY OF INTERACTION WITH N-PHENYL BENZHYDROXAMIC ACID USING A SPECIAL DIFFERENCE SPECTROPHOTOMETRIC TECHNIQUE

The binding behavior of a competitive inhibitor, N-phenylbenzhydroxamic acid (BHA) against horseradish peroxidase (HRP) was studied in order to understand and predict the interaction mechanism of hydrogen donors with the enzyme. The dissociation constants of the complexes of HRP-BHA, HRP-donor and HRP-BHA-azide were estimated at specified conditions by difference spectroscopy. The binding s...

متن کامل

Probing the role of cysteine residues in glucosamine-1-phosphate acetyltransferase activity of the bifunctional GlmU protein from Escherichia coli: site-directed mutagenesis and characterization of the mutant enzymes.

The glucosamine-1-phosphate acetyltransferase activity but not the uridyltransferase activity of the bifunctional GlmU enzyme from Escherichia coli was lost when GlmU was stored in the absence of beta-mercaptoethanol or incubated with thiol-specific reagents. The enzyme was protected from inactivation in the presence of its substrate acetyl coenzyme A (acetyl-CoA), suggesting the presence of an...

متن کامل

Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum.

Acetohydroxy acid synthase (AHAS), which catalyzes the key reactions in the biosynthesis pathways of branched-chain amino acids (valine, isoleucine, and leucine), is regulated by the end products of these pathways. The whole Corynebacterium glutamicum ilvBNC operon, coding for acetohydroxy acid synthase (ilvBN) and aceto hydroxy acid isomeroreductase (ilvC), was cloned in the newly constructed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The FEBS journal

دوره 272 2  شماره 

صفحات  -

تاریخ انتشار 2005